Adjusted Ideal Body Weight Dosing Reduces Pharmacokinetic Variability of the PD-L1-Targeted Antibody-Drug Conjugate PDL1V (PF-08046054)

Enahoro Iboi,¹ Yen Lin Chia,² Faye Zhang,³ John Harrold,² Andres Forero-Torres,⁴ Manisha Lamba,⁵ Amit Garg,⁶ Flavia Storelli³

¹Pharmacometrics and System Pharmacology, Pfizer, Bothell, WA; ²Pharmacology, Pfizer, South San Francisco, CA; ³Oncology Clinical Pharmacology, Pfizer, Bothell, WA; ⁴Early-Stage Clinical Development Oncology, Pfizer, Bothell, WA; ⁵Pharmacology, Pfizer, Pearl River, NY; ⁶Oncology Clinical Pharmacology, Pfizer, South San Francisco, CA

Conclusions

Preliminary PDL1V antibody-conjugated MMAE (acMMAE) population pharmacokinetic (PK) modeling and simulations support adjusted ideal body weight (AiBW)-based dosing to reduce the PK variability of PF-08046054, thereby mitigating the risk of overdosing high-body-weight patients and underdosing low-body-weight patients, and potentially widening the therapeutic window of PDL1V

Introduction

- PDL1V (PF-08046054) is a novel programmed cell death ligand 1 (PD-L1)–directed vedotin antibody-drug conjugate designed to deliver the cytotoxic agent monomethyl auristatin E (MMAE) to tumor cells expressing the PD-L1 cell surface protein¹
- The safety and antitumor activity of PDL1V in solid tumors is being investigated in the phase 1 study C5851001 (NCT05208762), at doses ranging from 0.5 to 1.75 mg/kg AiBW on days 1 and 8 every 3 weeks (2Q3W) and from 1.75 to 2.0 mg/kg AiBW on days 1 and 15 every 4 weeks (2Q4W)²⁻⁴
- AiBW dosing is used for all patients over a wide range of body weights (37.40-117.85 kg) and is calculated from ideal body weight (iBW) and total body weight (TBW), as follows⁵:
 - $AiBW = iBW + 0.4 \times (TBW iBW)$ where iBW is a function of the patient's sex and height, as follows:
 - $_{-}$ iBW (men) = 50 kg + 0.91 × (height, cm 152.4)
 - $_{-}$ iBW (women) = 45.5 kg + 0.91 × (height, cm 152.4)
- Here, we developed a preliminary population PK model to characterize the PK of PDL1V acMMAE and evaluate the impact of baseline demographics, laboratory results, and patient disease characteristics on PDL1V acMMAE (the antibody-conjugated payload) PK
- Using population PK model, impact of TBW vs AiBW on PK variability was evaluated through simulations

Methods

- A population PK model was developed via nonlinear mixed effects modeling using NONMEM version 7.4.3
- The population PK model included preliminary acMMAE plasma concentration data (n=3751) from a total of 162 patients treated with PDL1V as a monotherapy in the C5851001 study
- The primary tumor types were head and neck squamous cell cancer (53.1%) and non-small cell lung cancer (42.6%); other tumor types were triple-negative breast cancer (3.1%) and esophageal squamous cell carcinoma (1.2%)
- The impact of demographics, laboratory values, and patient disease characteristics on acMMAE PK were evaluated by visual examination followed, as applicable, by forward selection and backward elimination
- The average plasma concentration of acMMAE in the first 2 cycles (6 weeks) was simulated for both AiBW dosing and TBW dosing using individual post hoc estimates

Electronic Poster

Copies of this poster obtained through the Quick Response (QR) code are for personal use only and may not be reproduced without permission from the author of this poster. If you don't have a smartphone, access the poster via the internet at:

https://scientificpubs.congressposter.com/p/2s1dycaffz9ryvu3

References: 1. Kwan B, et al. *J Immunother Cancer*. 2021;9(suppl 2). Abstract A818. 2. Oliva M, et al. *Ann Oncol*. 2024;35;S486. Abstract 607O. 3. Fontana E, et al. *J Clin* Oncol. 2025;43:8611-8611. Abstract 8611. 4. Gillison ML, et al. J Clin Oncol. 2025;43:6033-6033. Abstract 6033. **5.** Devine BJ. *Drug Intell Clin Pharm*. 1974;8(11):650-655. **6.** Beal S. NONMEM User's Guide. (1989-2017), Icon Development Solutions, Ellicott City, Maryland, USA, 2017.

Funding: The study was sponsored by Pfizer.

Correspondence: Enahoro Iboi; Enahoro.Iboi@Pfizer.com

Presented at American Conference on Pharmacometrics October 18-21, 2025 | Aurora, CO

Results

- A 2-compartment model with linear elimination described PDL1V acMMAE plasma concentrations well (Figure 1)
- · Among the covariates that were evaluated, increased AiBW was associated with higher acMMAE clearance (CL) and higher central volume of distribution (**Table 1**)
- The AiBW exponent on acMMAE CL was 0.91 (ie, CL increased almost proportionally with AiBW) (**Table 1**)
- · Higher baseline tumor size and higher Eastern Cooperative Oncology Group performance status were associated with increase in acMMAE clearance with statistical significance; however, the magnitude of the effect was minimal (Table 1)
- PK simulations showed that, in comparison with TBW dosing, AiBW dosing reduced overall variability in acMMAE exposure, lowered acMMAE exposure in high-body-weight patients, and slightly increased exposure for low-bodyweight patients (Figure 2)

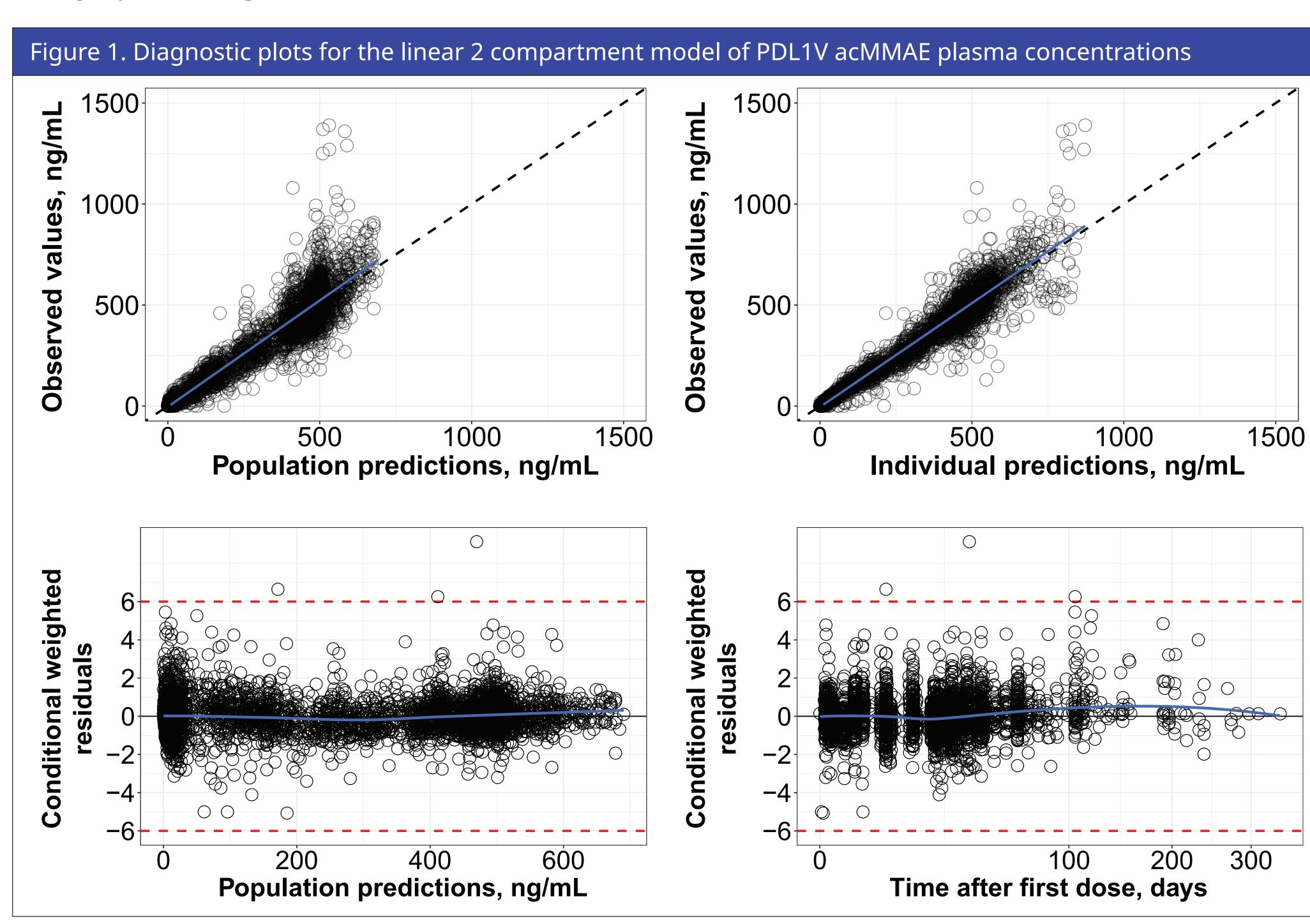


Figure 2. Model-predicted average PDL1V acMMAE concentration in the first 6 weeks for 1.5 mg/kg AiBW 2Q3W and 1.5 mg/kg TBW 2Q3W

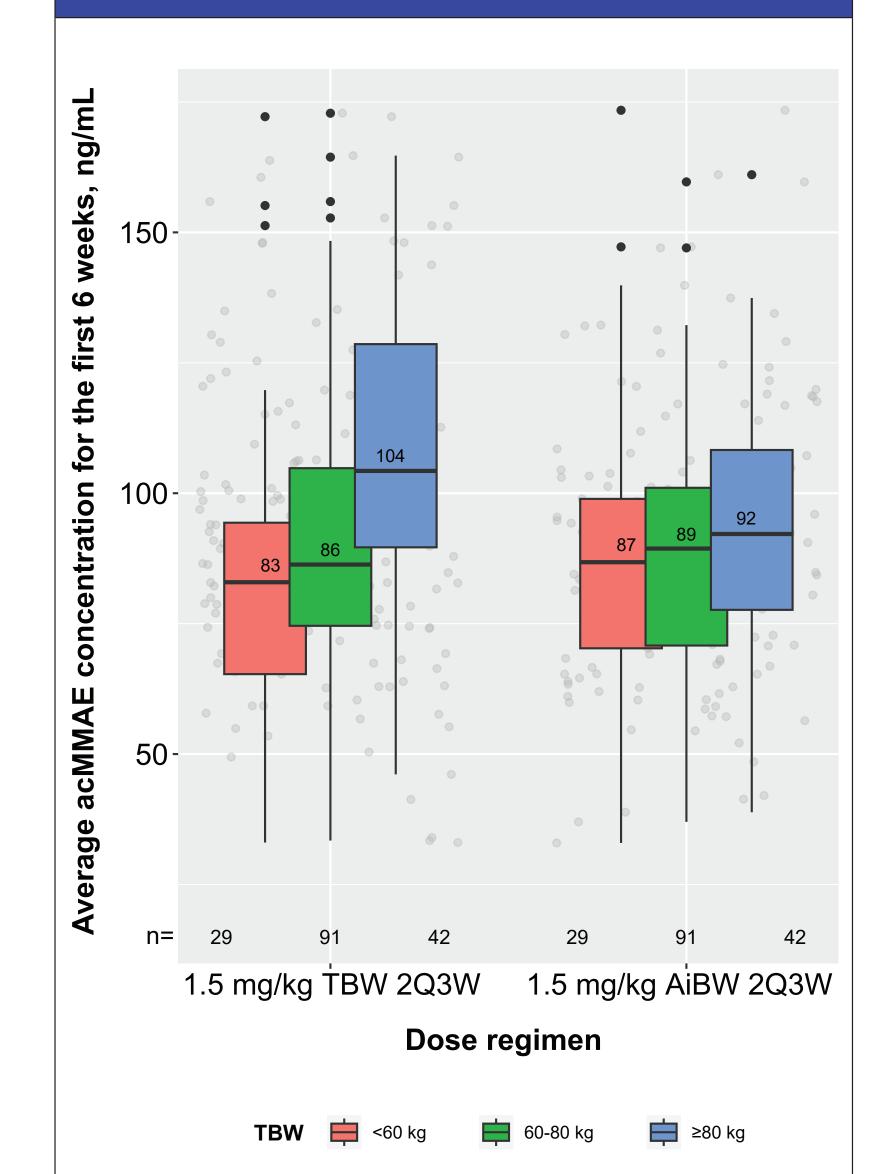


Table 1. Summary of preliminary PDL1V acMMAE population PK

model estimates		
Parameter	Point estimate	RSE, %
Systemic clearance (CL), L/day	2.23	2.58
Central volume of distibution (V _c), L	3.81	1.29
Peripheral volume of distibution (V _P), L	1.42	7.96
Intercompartmental clearance (Q), L/day	0.365	6.25
Covariate effect of AiBW on CL	0.905	16.2
Covariate effect of AiBW on V _c	1.04	7.62
Covariate effect of baseline tumor burden on CL	0.157	19.2
Covariate effect of ECOG = 0 on CL	-0.184	19.4
Interpatient variance		
ω_{CL}^{2}	0.0703	13.5
$\omega_{V_c}^2$	0.0233	13.4
Standard deviation of proportional error, σ_{prop}	0.0360	13.3
Standard deviation of additive error σ_{add} , ng/mL	11.3	27.8
Continuous covariates (AiBW, baseline tumor burden) were standardized to their median an Categorical covariates (ECOG) were assessed using a proportional shift model.	d assessed using a po	ower model.

ECOG, Eastern Cooperative Oncology Group