

Exposure-response characterization of the safety profile for a novel KAT6 inhibitor, PF-07248144, for use in dose optimization during a phase 1 first-in-patient study

Marlon Liyanage,¹ Kary Kowalski,¹ Jason H. Williams,² Dustin Huynh,¹ Meng Li,³ Joanna C. Masters²

¹Clinical Pharmacology & Translational Sciences, Pfizer Oncology Development; ²Pharmacometrics & Systems Pharmacology, Pfizer Research and Development;

³Clinical Development, Pfizer Oncology Development

Presenting author: Marlon Liyanage Email marlon.liyanage@pfizer.com for more information

Objective

To evaluate the potential exposure-response (E-R) relationships between PF-07248144 and safety endpoints of interest.

Conclusions

- PF-07248144 exhibits a positive E-R relationship for neutrophil count time course and Grade ≥ 3 treatment-emergent adverse events (TEAEs), which are primarily influenced by neutropenia.
- Dysgeusia and Grade ≥ 3 anemia do not appear dependent on exposure in the dose range tested.
- The E-R characterization across a variety of safety endpoints identified neutropenia as the primary safety endpoint to inform the benefit:risk assessment, and a longitudinal model was developed for differentiation of various dosing regimens of PF-07248144.

Background

- KAT6A and its paralog, KAT6B, are histone lysine acetyltransferases (KATs) that regulate lineage-specific gene transcription via H3K23 acetylation (H3K23Ac).
- PF-07248144 is a novel, potent and selective catalytic KAT6A and KAT6B inhibitor currently being developed in ER+ HER2- metastatic breast cancer.
- A phase 1 study (C4551001) to evaluate the safety, pharmacokinetics (PK), and early signs of efficacy of PF-07248144 is ongoing (NCT04606446).
- Understanding the potential E-R relationships for safety of PF-07248144 was vital to the benefit:risk assessment for dose selection and dose optimization.

Materials and Methods

- E-R analyses for PF-07248144 were conducted using relevant clinical data from the ongoing phase 1 study.
- Patients included in this analysis received PF-07248144 once daily (QD) as monotherapy or in combination with fulvestrant at doses ranging from 1 mg to 15 mg QD, with expansion cohorts at 1 mg and 5 mg.

LOGISTIC REGRESSION ANALYSES OF SELECT SAFETY ENDPOINTS

- Logistic regression analyses were conducted for safety endpoints of interest including any grade dysgeusia, Grade 2 dysgeusia, Grade ≥ 3 anemia, and Grade ≥ 3 TEAEs.
- All participants included in logistic regression analyses had at least 6 months of follow-up.
- PF-07248144 exposure metrics evaluated in logistic regression were generated from a population PK (PopPK) model and included C_{max} , C_{avg} , and $C_{trough,SD}$ following single dose and at steady state (day 15).
- The following covariates were explored for E-R analysis for safety: race, sex, baseline ECOG score, concomitant fulvestrant therapy, prior chemotherapy, age, baseline neutrophil count, baseline serum creatinine, baseline albumin, and baseline alanine aminotransferase (ALT).

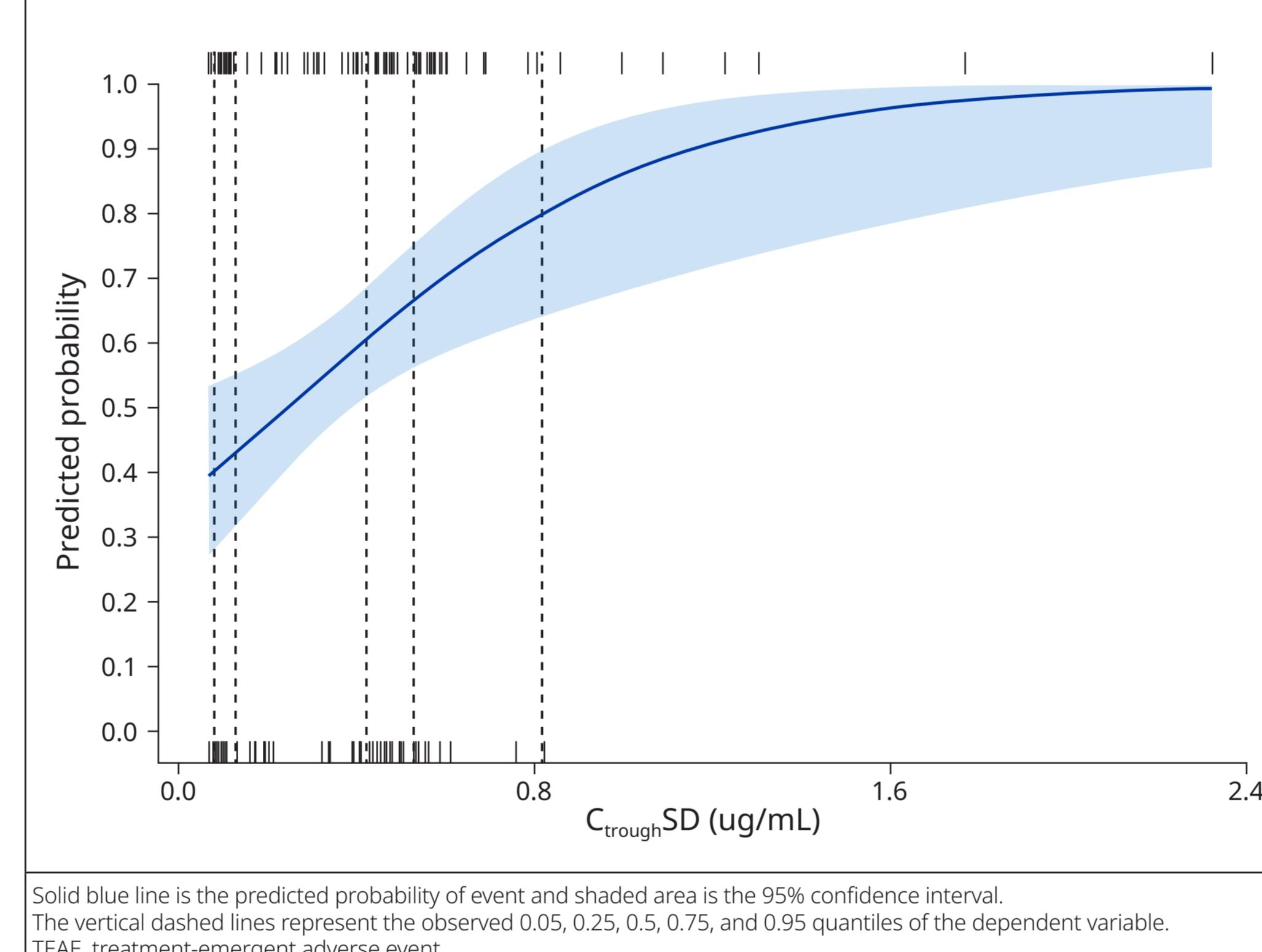
LONGITUDINAL NEUTROPENIA MODEL

- Due to the dose modifications seen in the C4551001 study, longitudinal pharmacokinetic-pharmacodynamic (PK-PD) models were pursued.
- Since Grade ≥ 3 neutropenia was the main adverse event and driver of dose modifications; a nonlinear mixed effect semi-mechanistic model of myelosuppression was used to characterize the E-R relationship.¹
- Simulations of absolute neutrophil count (ANC) over time were conducted for virtual patients over 6 months at various dosing regimens. If a virtual patient had a simulated ANC less than 1.0 ($\times 1000/\mu\text{L}$) at any point, they were considered to have experienced Grade ≥ 3 neutropenia.
- Dosing regimens with alternative schedules were dose intensity-matched to the corresponding QD dosing regimen.
- Grade ≥ 3 neutropenia rates were compared across dosing regimens.

Electronic Poster

An electronic version of this poster may be obtained by scanning this Quick Response (QR) Code with your smartphone app. Copies of this poster obtained through QR Code are for personal use only and may not be reproduced without permission from the authors of this poster.

References: 1. Friberg LE, Henningsson A, Maas H, et al. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. *J Clin Oncol*. 2002;20(24):4713-21. 2. Kowalski K, Liyanage M, Jermain B, et al. Model-informed phase 3 dose selection for a novel KAT6 inhibitor, PF-07248144, following dose optimization in 2L+ ER+/HER2- metastatic breast cancer (mBC) population. Poster presented at: 2024 ACCP Annual Meeting, Sep 14-16, 2025, Phoenix, AZ. 3. Jermain B, Wojciechowski J, Williams J, et al. Development of adaptive dose simulations using R and mrgsolve to improve tolerability while maximizing dose intensity in oncology. 2022 ACOP Annual Meeting, Oct 30-Nov 2, 2022, Aurora, CO. 4. Jermain B, Kowalski K, Liyanage M, et al. Dose optimization framework to estimate benefit-risk for oncology compounds: an integrated population model framework incorporating PK, safety, efficacy and impact of dose modifications. Abstract Accepted. 2025 ACOP Annual Meeting, Oct 18-21, 2025, Aurora, CO. 5. Jermain B, Kowalski K, Liyanage M, et al. Clinical utility index leveraging results from clinical trial simulation for safety and efficacy outcomes derived from longitudinal models. Abstract Accepted. 2025 ACOP Annual Meeting, Oct 18-21, 2025, Aurora, CO.


Acknowledgments: The authors would like to thank Brian Jermain, Yazdi Pithavala, Erik Hahn, and Brian Hee; they would also like to thank the participants, investigators, sub-investigators, research nurses, study coordinators, laboratory staff, and operations staff who participated in this study. Medical editorial support was provided by Oxford PharmaGenesis Inc., Wilmington, DE, USA, and was funded by Pfizer Inc.

Results

LOGISTIC REGRESSION ANALYSES OF SELECT SAFETY ENDPOINTS

- A positive E-R relationship was found between PF-07248144 single-dose C_{trough} and Grade ≥ 3 TEAE (Figure 1).
 - The majority of Grade ≥ 3 TEAEs were neutropenia, which was further explored through a longitudinal neutropenia model.
- No significant E-R relationship was found via logistic regression for any grade dysgeusia, Grade 2 dysgeusia, or Grade ≥ 3 anemia after backward selection.
 - Graphical comparisons of exposure metrics versus endpoints showed no obvious trends (Figure 2).

Figure 1. Simulations of the PF-07248144 exposure relationship with the probability of Grade ≥ 3 TEAE

LONGITUDINAL NEUTROPENIA MODEL

- The longitudinal PK-PD model of neutrophil count over time used a typical semi-mechanistic myelosuppression model structure (Figure 3) with circulating cells representing the neutrophil count, an E_{max} drug concentration effect on cell proliferation rate, and random effects on baseline neutrophil count and E_{max} .
- Model diagnostics indicated an adequate fit to the data (Figure 4), and the model was considered appropriate for further PK-PD simulations using the fixed and random effects from the associated PopPK model and the PK-PD neutropenia model.
- Simulations of Grade ≥ 3 neutropenia rates showed a clinically meaningful difference in central tendency between 1 mg and 5 mg that was in agreement with clinical observations from the C4551001 study.²
- Alternative regimens did not show a meaningful difference in Grade ≥ 3 neutropenia rates compared to the dose intensity-matched QD regimen (Table 1).
- Simulations from this model were leveraged through adaptive dosing simulation methods³ to inform the predicted safety risk for various dosing regimens, as part of a benefit:risk assessment through clinical utility index.^{4,5} This quantitative benefit:risk assessment supported 5 mg QD as the recommended phase 3 dose (RP3D).²

Figure 3. Myelosuppression model structure¹

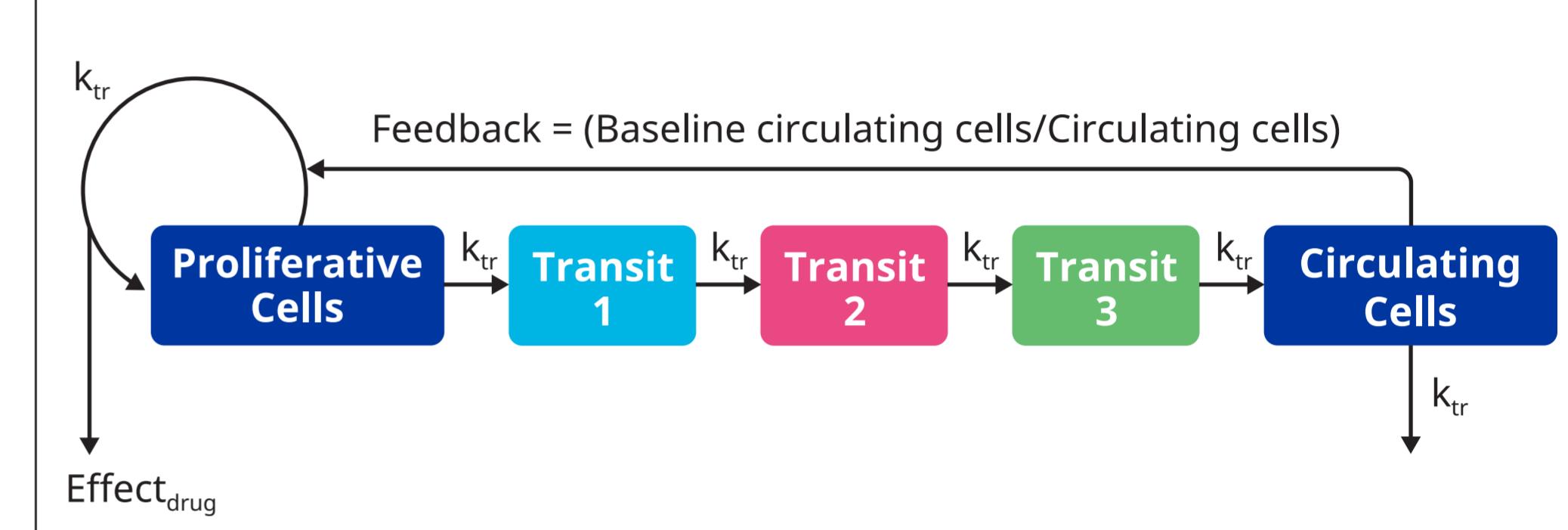
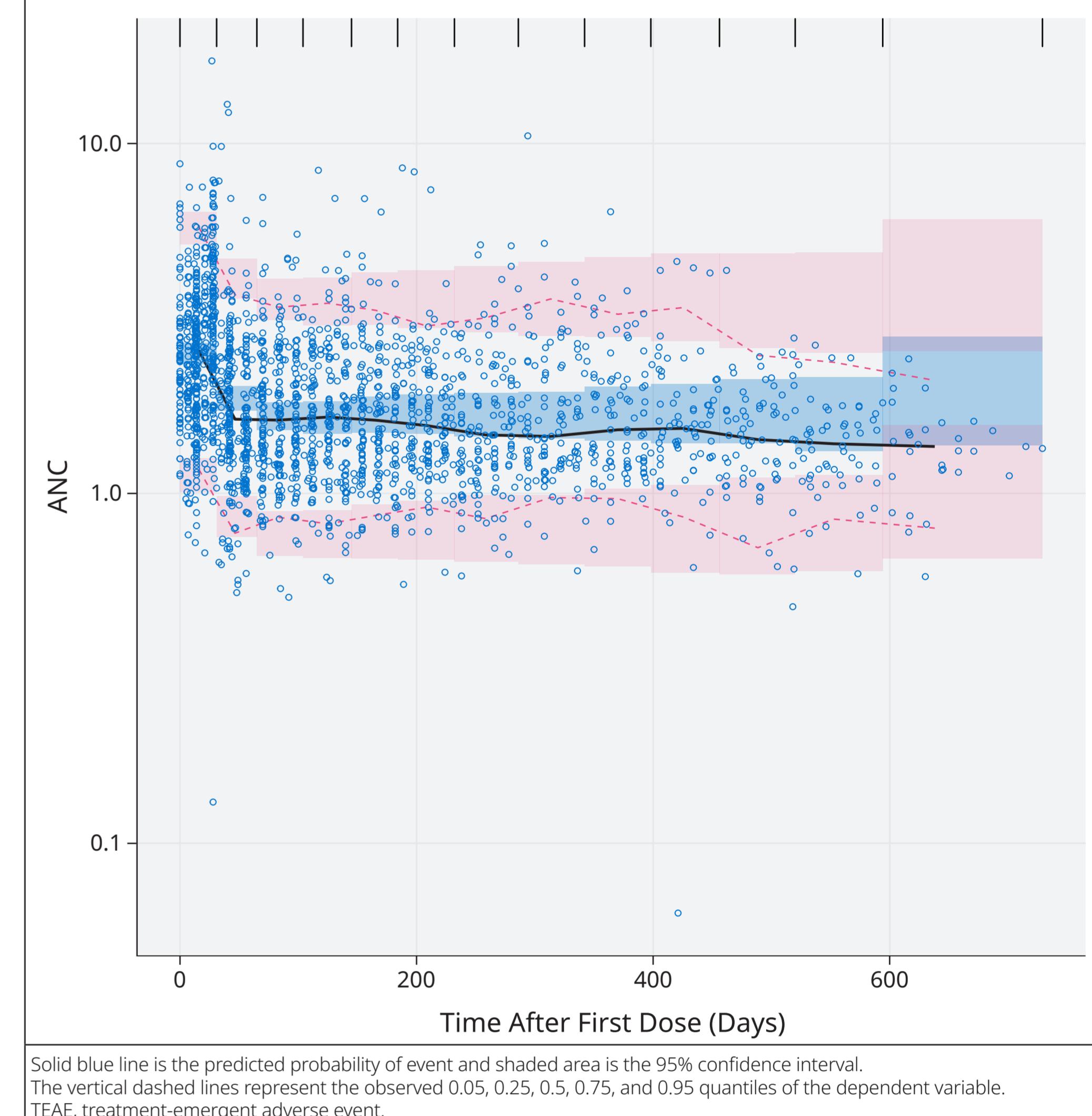
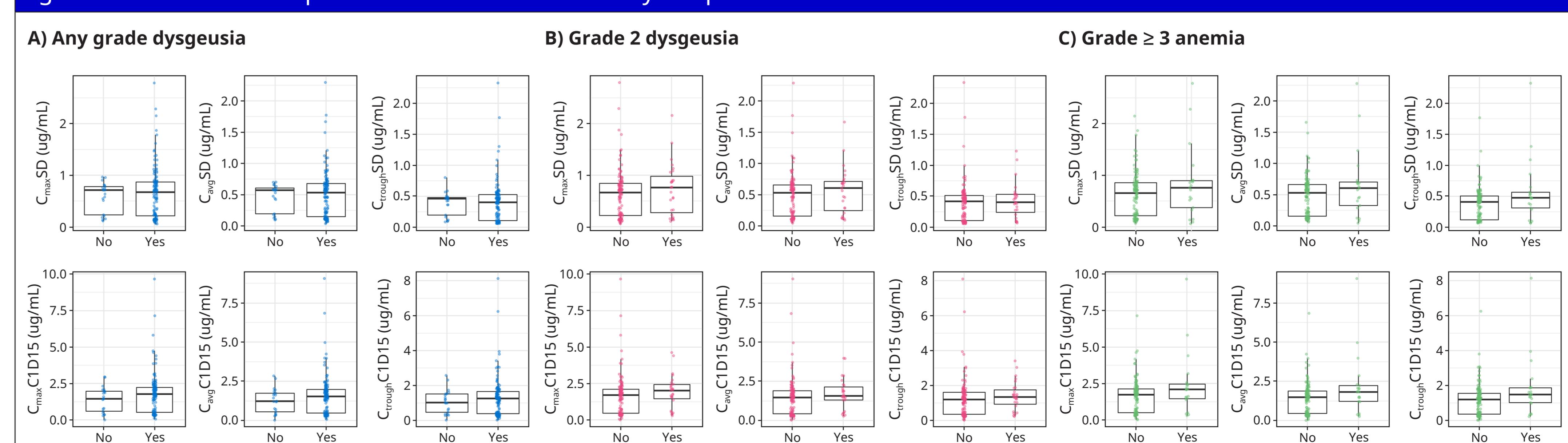


Figure 4. Prediction-corrected visual predictive check (pcVPC) of PF-07248144 longitudinal neutropenia model




Table 1. Simulated Grade ≥ 3 neutropenia rates with various regimens

Average dose intensity per day of PF-07248144 over 1 cycle	Daily (QD)	Weekly (QW)	3 weeks on (QD) 1 week off	4 days on (QD) 3 days off
1 mg	18.3%	13.5%	21.9%	17.4%
3 mg	39.4%	33.8%	41.8%	37.7%
5 mg	47.0%	43.9%	48.3%	45.1%

Simulated ANC less than 1.0 ($\times 1000/\mu\text{L}$) at any point was considered Grade ≥ 3 neutropenia.

ANC, absolute neutrophil count.

Figure 2. PF-07248144 exposure metrics vs select safety endpoints

