Phase 1 Trial of PF-07799933 (ARRY-440), a Next-Generation BRAF Inhibitor for BRAF-Mutant Cancers

Objective

To evaluate the safety and tolerability, PK, and potential clinical benefits of PF-07799933 administered as monotherapy (Part 1) and in combination with binimetinib or cetuximab (Part 2) in patients with BRAF Class I, II, and III alteration solid tumors, with and without brain involvement, to determine the monotherapy MTD/RDE.

Conclusions

- PF-07799933 demonstrated anti-tumor activity in preclinical models of BRAF V600 and non-V600 mutations.
- PF-07799933 treatment demonstrated multiple responses in treatment-refractory BRAF V600 tumors, both systemically and in the brain.
- Presented here is the first-ever reported BRAF dimer inhibitor (PF-07799933) demonstrating clinical activity against documented treatment-acquired dimerizing resistance mutations (eg, p48 splice variant).
- The novel, rapid PK-informed dose escalation design provides a new paradigm for accelerating the testing of next-generation targeted therapies early in clinical development.

Please scan this Quick Response (QR) code with your smartphone app to view an electronic version of this poster and supplementary materials. If you don't have a smartphone, access the poster via the internet at: https://scientificpubs.congressposter.com/p/g7c8b70w47vhdcmv

Plain Language Summary

ease scan this QR code with your smartphone app to view this plain language summary. you do not have a smartphone, access the summary at: ps://scientificpubs.congressposter.com/pls/g7c8b70w47vhdcmv

References: 1. Agianian B, et al. J Med Chem 2018;61:5775-93. **2.** Wichmann J, et al. Clin Cancer Res 2022;28:770-80. **3.** Poulikakos P, et al. Nature 2012;464:427-30. **4.** Singh AK, et al. ACS Omega 2023;8:27819-44.

Acknowledgments: This study was sponsored by Pfizer. Medical writing support was provided by Haniya Javaid, of Engage Scientific Solutions, and was funded by Pfizer.

Disclosures: RY: Honoraria: Zai Lab; Consulting/Advisory: Mirati Therapeutics, Amgen, Loxo@Lilly, Regeneron; Research Funding: Array BioPharma, Boehringer Ingelheim, Mirati Therapeutics, Pfizer, Daiichi Sankyo, Boundless Bio. MM: Consulting/Advisory: Astellas Pharma, AstraZeneca, Bicycle Therapeutics, Castle Biosciences, Eisai, Alpine Immune Sciences, Arcus Biosciences, Arvinas, Ascentage Pharma Group, Astellas Pharma, Bayer, Bicycle Therapeutics, BioMed Valley Discoveries, BioNTech, Dragonfly Therapeutics, EMD Serono, Epizyme, Erasca, Inc, Exelixis, Foghorn Therapeutics, G1 Therapeutics, Genentech, Gilead Sciences, GlaxoSmithKline, IDEAYA Biosciences, Ikena Oncology, Immvira, Infinity Pharmaceuticals, Jacobio, Kechow Pharma, Kezar Life Sciences, Kinnate Novartis, OncoC4, Oncorus, PACT Pharma, Pfizer, Plexxikon, Poseida, Prelude Therapeutics, Pyramid Biosciences, Regeneron, Sapience Therapeutics, Scholar Rock, Seagen, Synthorx, Takeda, Tempest Therapeutics, TeneoBio, Tizona Therapeutics, Inc., Tmunity Therapeutics, Inc., Top Alliance BioScience, Xilio Therapeutics. RH: Consulting/Advisory: Immunocore, Tango Therapeutics; Research Funding: BMS GmbH & Co. KG, Novartis. **JTB:** Research Funding: AbbVie, Amgen, AstraZeneca, DSi, Lilly, Nektar, Nektar, Novartis, Pfizer, Seattle Genetics/Astellas. **MHT:** Honoraria: Bayer, Blueprint Medicines, Bristol-Myers Squibb Foundation, Eisai, Merck, Pfizer, Regeneron, Roche; Consulting/Advisory: Bayer, Blueprint Medicines, Bristol-Myers Squibb, Cascade Prodrug, Eisai, Exelixis, Immune-Onc Therapeutics, Loxo, Merck, Novartis, Pfizer, Regeneron, Sanofi; Speakers' Bureau: Blueprint Medicines, Bristol-Myers Squibb, Eisai, Merck; Research Funding: Blueprint Medicines, Bristol-Myers Squibb, Eisai, Loxo/Bayer, Merck, Moderna Therapeutics, Pfizer, Seagen. JC: None. DWB: Honoria: Exelixis paid to DB's institution. SMG: Honoraria: Merck; Consulting/Advisory: AstraZeneca, Blueprint Medicines, Bristol-Myers Squibb, Daichii Sanyko, Eisai, Genentech/ Roche, Gilead Sciences, GlaxoSmithKline, Janssen Oncology, Lilly, Merck, Mirati Therapeutics, Novartis, Pfizer, Takeda; Research Funding: Amgen, Astellas Pharma, AstraZeneca, BioMed Valley Discoveries, Blueprint Medicines, Calithera Biosciences, Daichii Sanyko, Daiichi Sankyo, Dragonfly Therapeutics, eFFECTOR Therapeutics, Elevation Oncology, Erasca, Inc, Genentech/Roche, Helsinn Therapeutics, I-Mab, Incyte, InventisBio, Janssen Oncology, Mer Mirati Therapeutics, Nektar, Numab, Pfizer, Regeneron, Turning Point Therapeutics, Verastem, Ymabs Therapeu Inc; Travel Expenses: Mirati Therapeutics; Other: AstraZeneca. **CM, KPP, ELD**: None. **KBS, GF, SKD, MBR, AKM**: Employment/stockholder: Pfizer. BS, SAB, AS, ENB, BRB, JW, TCM, WIW, DK, SG, NR, JJG, PAL, DPH: Employment: Pfizer. SMR: Employment/stockholder: Pfizer; Research Funding: Pfizer.

Copyright © 2024

Presented at the American Association of Cancer Research (AACR) Annual Meeting, April 5–10, 2024, San Diego, CA, USA

Rona Yaeger¹, Meredith McKean², Rizwan Haq³, Joseph T. Beck⁴, Matthew H. Taylor⁵, Jonathan Cohen⁶, Daniel W. Bowlesˀ, Shirish M. Gadgeel⁶, Catalin Mihalcioiu⁹, Kyriakos P. Papadopoulos¹⁰, Eli L. Diamond¹, Keren B. Sturtz¹¹, Gang Feng¹², Stefanie K. Drescher¹¹, Micaela B. Reddy¹¹, Bhaswati Sengupta¹¹, Arnab K. Maity¹³, Suzy A. Brown¹¹, Anurag Singh¹¹, Eric N. Brown¹¹, Brian R. Baer¹¹, Jim Wong¹¹, Tung-Chung Mou¹¹, Wen I. Wu¹¹, Dean Kahn¹¹, Sunyana Gadal¹, Neal Rosen¹, John J. Gaudino¹¹, Patrice A. Lee¹¹, Dylan P. Hartley¹¹, Stephen Michael Rothenberg¹¹

Background

- Approved B-type RAF proto-oncogene (BRAF) inhibitors have transformed the treatment landscape for BRAF V600-mutant cancers but suffer 3 key liabilities: limited brain penetrance, BRAF dimer promoting resistance mutations, and toxicity from paradoxical signaling activation in BRAF wild-type cells. 1-3
- Class I BRAF inhibitors are ineffective against BRAF Class II and III (homodimers and heterodimers).4 Next-generation agents that cause pan-RAF inhibition may more broadly target BRAF mutants but are limited by a narrow therapeutic index.^{1,4}
- PF-07799933 (ARRY-440) is a highly selective ATP-competitive small molecule RAF kinase inhibitor currently under investigation in patients with BRAF V600 mutant and non-V600-altered advanced solid tumors; it is a brain-penetrant BRAF-selective monomer/dimer inhibitor that spares A-type RAF and C-type RAF proto-oncogene.

Methods

STUDY DESIGN

- PF-07799933 was characterized in patient-derived BRAF-mutant cancer cells in vitro and in vivo.
- PF-07799933 is being investigated in patients with refractory BRAF-mutant solid tumors using novel phase 1 design, enabling flexible, rapid dose escalation based on safety and pharmacokinetic (PK) assessments.
- This study comprises 3 parts; here we report on Parts 1 and 2 (**Figure 1**).
- Part 1: Single-agent PF-07799933, dosed orally, in cohorts of 2–6 patients, with dose escalation starting at 50 mg once daily (QD), increasing to 150 mg QD, 225 mg twice daily (BID), and 450 mg BID, continuing until stopping criteria are met for maximum tolerated dose (MTD) and/or recommended dose for expansion (RDE)
- 3-fold dose escalation was enabled if the following safety criteria were met: no dose-limiting toxicities (DLTs) and margin of exposure ≤40 (assessed through drug exposure at a severely toxic dose in 10% of rats, compared with human PK parameters) in ≥2 or 3 participants in the
- A patient initially on monotherapy may be transitioned to a specific combination therapy according to treatment needs.
- Part 2: Combination therapy in dose escalation; PF-07799933, starting at 150 mg, dosed with binimetinib or cetuximab.

• In both parts, the number of evaluable patients at all dose levels for DLT was determined using a Bayesian logistic regression model (BLRM). Dose escalation was guided by BLRM escalating with overdose control (EWOC) principles, safety, and PK parameters.

Development, Cambridge, MA, USA

KEY INCLUSION CRITERIA

- Patients aged >16 years; ECOG PS 0 or 1, or ECOG PS 2 if related to underlying cancer.
- Histological or cytological diagnosis of advanced/metastatic solid tumor including primary brain tumor; and prior to enrollment, confirmation of sufficient availability of archival tissue samples for
- Documented evidence of a qualifying BRAF alteration.
- All participants with BRAF V600 mutation must have progressed on prior BRAF inhibitor +/- mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor.
- All participants for whom immune checkpoint inhibitor (ICI) therapy is standard of care must have been previously treated with a minimum of 1 line of ICI.

Figure 1: Study design Part 2: Combination dose escalation DLT period: 21 days; Cycle length: 21 days Dose level 2 PF-07799933 225 mg BID Binimetinib 45 mg BID Dose level 1 PF-07799933 Dose level 1 150 mg QD 150 mg QD nimetinib 45 mg BID Add on rational combination PF-07799933 + Binimetinib 45 mg RRAF V600 or Class II PF-07799933

¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²Sarah Cannon Research Institute, Nashville, TN, USA;

³Dana-Farber Cancer Institute, Boston, MA, USA; ⁴Highlands Oncology, Fayetville, AR, USA; ⁵Providence Portland Medical Center,

Portland, OR, USA; ⁶Hadassah Medical Center, Jerusalem, Israel; ⁷University of Colorado Hospital, Aurora, CO, USA; ⁸Henry Ford Health System, Detroit, MI, USA; 9McGill University Health Centre, Montreal, AB, Canada; 10South Texas Accelerated Research

Therapeutics, San Antonio, TX, USA; ¹¹Pfizer-Boulder Research and Development, Boulder, CO, USA; ¹²Pfizer Early Clinical

Initial binimetinib dose is 45 mg BID orally. Initial cetuximab dose is 400 mg/m² as a 120-min IV infusion, then 250 mg/m² is a 60-min IV infusion once weekly (subsequent doses). AE=adverse event; BID=twice daily; BRAF=B-type RAF proto-onco jene; CRC=colorectal cancer; DLT=dose-limiting toxicity; MTD=maximal tolerated dose; PD=progressive disease; QD=once lailv: RDF=recommended dose for expansion

Table 3: Summary of confirmed best overall response based on investigate

BRAF V600 or Class II

PF-07799933

Results

PRECLINICAL

- PF-07799933 inhibited signaling in vitro, disrupted BRAF-containing homo- and heterodimers, and caused less paradoxical signaling compared with approved agents (Supplementary Figure).
- PF-07799933 alone and in combination with binimetinib inhibited tumor growth systemically and in the brain in mouse xenografts harboring de novo and acquired BRAF dimer-forming mutations (Figure 2).

PATIENTS

- In this ongoing study, 30 patients with BRAF-mutant cancers started PF-07799933 treatment, from the data cutoff of August 24, 2023.
- 18 patients (60%) received escalating doses of PF-07799933 50 mg QD to 450 mg BID as monotherapy.
- 12 patients (40%) received PF-07799933 in combination with binimetinib (27%) or cetuximab (all colorectal cancer [CRC]) (13%).
- 6 of 18 patients (33%) initially receiving PF-07799933 monotherapy transitioned to combination therapy with PF-07799933 and binimetinib.
- Patients had the following tumor types: melanoma (43%), CRC (17%), primary brain tumor (PBT) (13%), thyroid (10%), and other (n=5 [3%] each; **Table 1**).
- BRAF mutations included Class I (V600E) (73%), Class II (10%), and Class III (13%; **Table 1**).
- All BRAF V600E+ patients with cancer were previously treated with ≥1 approved BRAF inhibitor with MEK inhibitor, and all BRAF V600E+ patients with melanoma also were previously treated with ≥1 immune checkpoint inhibitor.

SAFETY

- PF-07799933 was well-tolerated as monotherapy or combination.
- There were no DLTs, and the MTD was not reached.

Day

CTG1441 PDX

BRAF G469A

BID=twice daily; mpk=mg/kg; p/s=photon per second; QD=once daily; SEM=standard error of the mean

• Treatment-emergent adverse events (TEAEs) in ≥3 patients for monotherapy for any grade/grade ≥3, respectively, were fatigue (44%/0%), headache (28%/0%), vision blurred (22%/6%), and lipase increased (17%/0%; **Table 2**).

Subcutaneous Class I xenografts

A375 BRAF V600E

Class II and indel xenografts

Figure 2: Efficacy curves of mean tumor volumes in mice (n=8–10) following oral treatment with indicated agents

BRAF C487-P492 indel

(A) Subcutaneous xenografts (left) and flux measurements of intracranial xenografts (right) of Class I A375 (BRAF V600E) melanoma cells. (B) Subcutaneous patient-derived or cell line xenografts of Class II, indel, and Class I acquired resistance models

Exarafenib 20 mpk BID

The most common TEAEs for combination therapy for any grade/grade ≥3, respectively, were peripheral edema (33%/0%), acneiform rash, diarrhea, and fatigue (each 28%/0%; **Table 2**) and were most often attributed to binimetinib or cetuximab.

The AE profile for PF-07799933 was consistent with less paradoxical signaling activation (eg, limited rash observed).

Table 1: Demographics and baseline characteristics Part 2 PF-07799933 PF-07799933 PF-07799933 150 mg QD + 225 mg BID + 150 mg QD + binimetinik monotherapy cetuximab^a 45 mg BID 45 mg BID Overal (N=4) (N=30) 18-44 0 (0.0) 0 (0.0) 9 (50.0) 0(0.0)9 (30.0) 45-64 2 (50.0) 2 (50.0) 4 (100.0) 5 (27.8) 13 (43.3) ≥65 2 (50.0) 2 (50.0) 0 (0.0) 8 (26.7) 4 (22.2) Female 3 (75.0) 1 (25.0) 4 (100.0) 16 (53.3) 8 (44.4) 10 (55.6) 1 (25.0) 3 (75.0) 0 (0.0) 14 (46.7) 4 (100.0) 3 (75.0) 26 (86.7) 1 (3.3) 1 (5.6) 1 (25.0) 0 (0.0) 1 (25.0) Not reported Melanoma 3 (75.0) 2 (50.0) 13 (43.3) 8 (44.4) 1 (5.6) 4 (100.0) 0 (0.0) 5 (16.6) 0 (0.0) Colorectal cancer 4 (22.2) 0 (0.0) 0 (0.0) 0 (0.0) 4 (13.3) Primary brain 0 (0.0) 3 (16.7) 0(0.0)0 (0.0) 3 (10.0) Thyroid 2 (11.1) 0 (0.0) 1 (25.0) 2 (50.0) 5 (16.6 Other BRAF mutation class Class I 14 (77.8) 3 (75.0) 2 (50.0) 3 (75.0) 22 (73.3) 2 (11.1) 1 (25.0) 0 (0.0) 0 (0.0) 3 (10.0) 0 (0.0) 1 (25.0) 1 (25.0) 4 (13.3) Class III 2 (11.1) 1 (25.0) BRAF fusion 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.3) Data are n (%). a Initial cetuximab dose is 400 mg/m² as a 120-min IV infusion, then 250 mg/m² as a 60-min IV

nfusion once weekly (subsequent doses). BID=twice daily; QD=once daily

Intracranial Class I xenografts

A375 BRAF V600E-luc

melanoma

Class I resistance xenografts

MEL21514 PDX

BRAF V600E + p61

Vehicle QD

► Binimetinib 3.5 mpk BID

-- PF-07799933 30 mpk QD

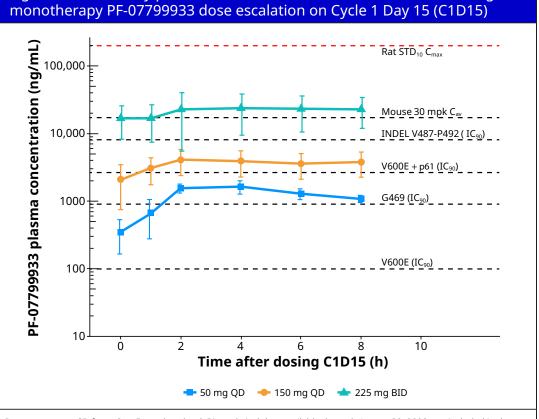
Encorafenib 20 mpk OD + binimetinib 3.5 mpk BID

FF-07799933 30 mpk QD + binimetinib 3.5 mpk BID

Encorafenib 60 mpk OF

10⁵ — Binimetinib 3.5 mpk BID

able 2: Treatment-emergent adverse events for patients taking PF-07799933 as monotherapy and in combination with binimetinib or cetuximab


Part 1: PF-07799933 monotherapy (N=18)		
TEAE, n (%)	Any grade	Grade ≥3
Fatigue	8 (44.4)	0 (0.0)
Headache	5 (27.7)	0 (0.0)
Blurry vision	4 (22.2)	1 (5.5)
Increased lipase levels	3 (16.6)	0 (0.0)
Part 2: PF-07799933 combination therapy (N=18) ^a		
Peripheral edema	6 (33.3)	0 (0.0)
Acneiform rash	5 (27.7)	0 (0.0)
Diarrhea	5 (27.7)	0 (0.0)

Patient number is a collation of 12 patients who started combination therapy and 6 patients who switched to combinatior EAE=treatment-emergent adverse event

PHARMACOKINETICS

• PK-guided dose escalation enabled PF-07799933 Cycle 1 Day 15 plasma concentrations to exceed the IC_{on} for key BRAF mutations by dose level 3 (225 mg BID; **Figure 3**).

Figure 3: Preliminary plasma concentrations as function of time during

Data are mean ± SD for n=3 to 5 per dose level. Bioanalytical data available through August 30, 2023, are included in the olot. BID=twice daily; QD=once daily

- Multiple confirmed responses in BRAF V600E+ patients with cancer both systemically and in the brain were seen in 4 of 7 patients at 225 mg BID ± binimetinib, including 1 complete response (CR) in a BRAF V600E+ PBT patient.
 - The CR response occurred in a patient taking PF-07799933 monotherapy (225 mg BID), based on the Response Assessment in Neuro-Oncology (RANO) investigator assessment (**Table 3**).
- A 5th confirmed response (second BRAF V600E+ PBT patient) occurred after data cutoff resulting in 5 of 7 responses.
- To our knowledge, this study includes the first evidence of efficacy in a patient with BRAF V600E+ thyroid cancer with identification of a dimerizing BRAF splice variant (**Figure 4**).
- PF-07799933 shows early evidence of anti-tumor activity in BRAF non-V600 tumors, as evidenced by a patient with BRAF G466E+ (Class III) adenoid cystic carcinoma with a sustained molecular CR in ctDNA.

assessment (RECIST v1.1) PF-07799933 PF-07799933 PF-07799933 150 mg QD + 225 mg BID + PF-07799933 binimetinib 150 mg QD + binimetinib cetuximaba 45 mg BID 45 mg BID (N=14)(N=4)(N=4)Complete 0(0.0)1 (7.1)^b 0(0.0)0(0.0)response (CR) 2 (50.0) 1 (7.1) 0 (0.0) Partial response 1 (25.0) Stable disease 7 (50.0)^c 2 (50.0) 2 (50.0)

5 (35.7)

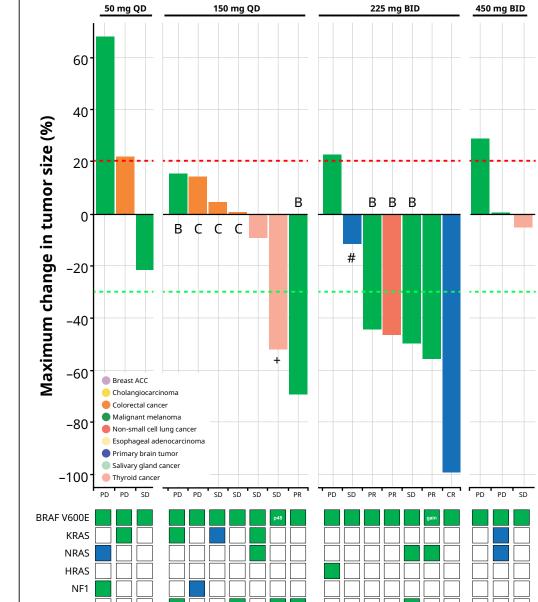
1 (7.1)

rogressive

disease (PD)

Non-CR/non-PD

Initial cetuximab dose is 400 mg/m² as a 120-min IV infusion, then 250 mg/m² as a 60-min IV infusion once weekly subsequent doses). b CR occurred in a patient with primary brain tumor taking PF-07799933 monotherapy (225 mg BID) ased on investigator assessment using the Response Assessment in Neuro-Oncology (RANO). ^c A sustained PR (tumor olume reduction –50%) occurred in a patient with thyroid cancer, after the addition of binimetinib for disease progression er RECIST best observed response in this setting is SD. CR=complete response; PD=progressive disease


2 (50.0)

0(0.0)

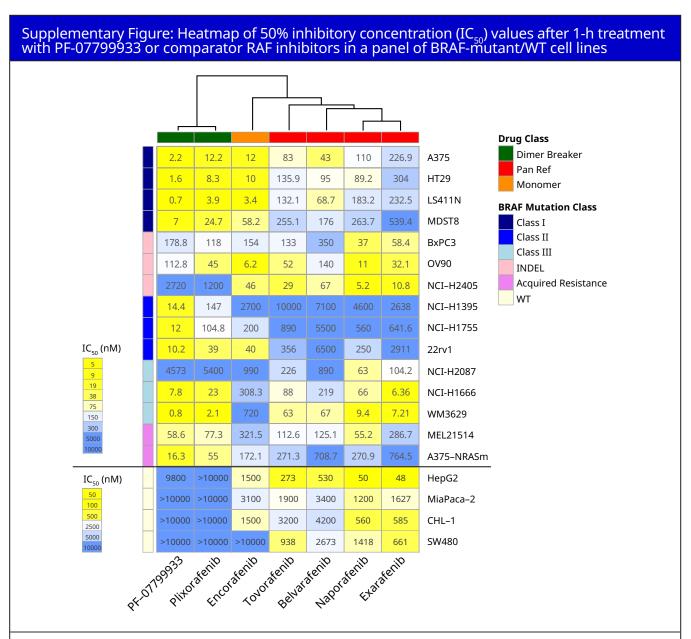
2 (50.0)

0 (0.0)

igure 4: Waterfall plot of maximum change in tumor size by treatment, and tumor for patients with BRAF V600E/Class I mutant cancer

- Preliminary summary of select co-occurring mutations (activating oncogenes or inactivating tumor suppressors) is shown at the bottom (green=tumor; blue=ctDNA). B indicates Part 1 participant enrolled into monotherapy dose escalation who added on binimetinib; B or C indicates Part 2 participant enrolled into combination dose escalation with either binimetinib
- p48 dimerizing splice variant identified on archival tissue biopsy obtained after progression on BRAF inhibitor. # Participant with primary brain tumor and confirmed PR after data cutoff (–92% tumor volume reduction, per RANO).

ACC=adenoid cystic carcinoma; BID=twice daily, QD=once daily


Continued Next Page

Phase 1 Trial of PF-07799933 (ARRY-440), a Next-Generation BRAF Inhibitor for BRAF-Mutant Cancers

Rona Yaeger¹, Meredith McKean², Rizwan Haq³, Joseph T. Beck⁴, Matthew H. Taylor⁵, Jonathan Cohen⁶, Daniel W. Bowles⁷, Shirish M. Gadgeel⁶, Catalin Mihalcioiu⁶, Kyriakos P. Papadopoulos¹⁰, Eli L. Diamond¹, Keren B. Sturtz¹¹, Gang Feng¹², Stefanie K. Drescher¹¹, Micaela B. Reddy¹¹, Bhaswati Sengupta¹¹, Arnab K. Maity¹³, Suzy A. Brown¹¹, Anurag Singh¹¹, Eric N. Brown¹¹, Brian R. Baer¹¹, Jim Wong¹¹, Tung-Chung Mou¹¹, Wen I. Wu¹¹, Dean Kahn¹¹, Sunyana Gadal¹, Neal Rosen¹, John J. Gaudino¹¹, Patrice A. Lee¹¹, Dylan P. Hartley¹¹, Stephen Michael Rothenberg¹¹

¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²Sarah Cannon Research Institute, Nashville, TN, USA; ³Dana-Farber Cancer Institute, Boston, MA, USA; ⁴Highlands Oncology, Fayetville, AR, USA; ⁵Providence Portland Medical Center, Portland, OR, USA; ⁶Hadassah Medical Center, Jerusalem, Israel; ¬¹University of Colorado Hospital, Aurora, CO, USA; ⑥Henry Ford Health System, Detroit, MI, USA; ⑥McGill University Health Centre, Montreal, AB, Canada; ℩⑤South Texas Accelerated Research Therapeutics, San Antonio, TX, USA; □¹Pfizer-Boulder Research and Development, Boulder, CO, USA; ¹²Pfizer Ealy Clinical Development, Cambridge, MA, USA

Supplementary Material

 IC_{50} values derived from dose–response curves measured by In-Cell Western for inhibition of phospho-ERK. Data are representative of 2 or 3 independent experiments and are averaged over 3 technical replicates. BRAF=B-type RAF proto-oncogene; IC=inhibitory concentration; INDEL=insertion/deletion; NRASm=NRAS mutant; WT=wild type